
Chapter 2
Modeling the Quad-Rotor Mini-Rotorcraft

The complete dynamics of an aircraft, taking into account aero-elastic effects, flex-
ibility of the wings, internal dynamics of the engine and the whole set of changing
variables are quite complex and somewhat unmanageable for the purposes of con-
trol. Therefore, it is interesting to consider a simplified model of an aircraft formed
by a minimum number of states and inputs, but retaining the main features that must
be considered when designing control laws for a real aircraft.

This chapter deals with the modeling of a quad-rotor rotorcraft, and is organized
as follows. Section 2.1 gives a general overview of the quad-rotor aerial vehicle and
its operation principle. Next, Sect. 2.2 deals with the quad-rotor modeling, present-
ing two different approaches: Euler–Lagrange in Sect. 2.2.1 and Newton–Euler in
Sect. 2.2.2. Subsequently, it is shown in Sect. 2.2.3 how to derive Lagrange’s equa-
tions from Newton’s equations. Section 2.2.4 presents a Newton–Euler modeling
for an “X-Flyer” quad-rotor configuration. Finally, some concluding remarks are
presented in Sect. 2.3.

2.1 The Quad-Rotor Mini-Rotorcraft

The quad-rotor mini-rotorcraft is controlled by the angular speeds of four electric
motors as shown in Fig. 2.1. Each motor produces a thrust and a torque, whose
combination generates the main thrust, the yaw torque, the pitch torque, and the roll
torque acting on the quad-rotor. Conventional helicopters modify the lift force by
varying the collective pitch. Such aerial vehicles use a mechanical device known
as swashplate. This system interconnects servomechanisms and blade pitch links in
order to change the rotor blades pitch angle in a cyclic manner, so as to obtain the
pitch and roll control torques of the vehicle. In contrast, the quad-rotor does not
have a swashplate and has constant pitch blades. Therefore, in a quad-rotor we can
only vary the angular speed of each one of the four rotors to obtain the pitch and roll
control torques.

From Fig. 2.1 it can be observed that the motor Mi (for i = 1, . . . ,4) produces the
force fi , which is proportional to the square of the angular speed, that is, fi = kw2

i .
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Fig. 2.1 The quad-rotor
control input

Given that the quad-rotor’s motors can only turn in a fixed direction, the produced
force fi is always positive. The front (M1) and the rear (M3) motors rotate counter-
clockwise, while the left (M2) and right (M4) motors rotate clockwise. With this
arrangement, gyroscopic effects and aerodynamic torques tend to cancel in trimmed
flight. The main thrust u is the sum of individual thrusts of each motor. The pitch
torque is a function of the difference f1 −f3, the roll torque is a function of f2 −f4,
and the yaw torque is the sum τM1 + τM2 + τM3 + τM4 , where τMi

is the reaction
torque of motor i due to shaft acceleration and blades drag. The motor torque is
opposed by an aerodynamic drag τdrag, such that

Irotω̇ = τMi
− τdrag (2.1)

where Irot is the moment of inertia of a rotor around its axis. The aerodynamic drag
is defined as

τdrag = 1

2
ρAv2 (2.2)

where ρ is the air density, the frontal area of the moving shape is defined by A, and
v is its velocity relative to the air. In magnitude, the angular velocity ω is equal to
the linear velocity v divided by the radius of rotation r

ω = v

r
(2.3)

The aerodynamic drag can be rewritten as

τdrag = kdragω
2 (2.4)

where kdrag > 0 is a constant depending on the air density, the radius, the shape of
the blade and other factors. For quasi-stationary maneuvers, ω is constant, then

τMi
= τdrag (2.5)

Forward pitch motion is obtained by increasing the speed of the rear motor M3 while
reducing the speed of the front motor M1. Similarly, roll motion is obtained using
the left and right motors. Yaw motion is obtained by increasing the torque of the
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Fig. 2.2 Pitch, roll and yaw
torques of the quad-rotor

front and rear motors (τM1 and τM3, respectively) while decreasing the torque of
the lateral motors (τM2 and τM4, respectively). Such motions can be accomplished
while maintaining the total thrust constant, see Fig. 2.2.

2.2 Quad-Rotor Dynamical Model

The quad-rotor model is obtained by representing the aircraft as a solid body evolv-
ing in a three dimensional space and subject to the main thrust and three torques:
pitch, roll and yaw.

2.2.1 Euler–Lagrange Approach

Let the generalized coordinates of the rotorcraft be expressed by

q = (x, y, z,ψ, θ,φ) ∈R
6 (2.6)

where ξ = (x, y, z) ∈ R
3 denotes the position vector of the center of mass of the

quad-rotor relative to a fixed inertial frame I . The rotorcraft’s Euler angles (the
orientation of the rotorcraft) are expressed by η = (ψ, θ,φ) ∈ R

3, ψ is the yaw
angle around the z-axis, θ is the pitch angle around the y-axis and φ is the roll angle
around the x-axis (see [33] and [5]). An illustration of the generalized coordinates
of the rotorcraft is shown in Fig. 2.3. Define the Lagrangian

L(q, q̇) = Ttrans + Trot − U (2.7)

where Ttrans = m
2 ξ̇

T
ξ̇ is the translational kinetic energy, Trot = 1

2�TI� is the ro-
tational kinetic energy, U = mgz is the potential energy of the rotorcraft, z is the
rotorcraft altitude, m denotes the mass of the quad-rotor, � is the vector of the an-
gular velocity, I is the inertia matrix and g is the acceleration due to gravity. The
angular velocity vector ω resolved in the body-fixed frame is related to the gener-
alized velocities η̇ (in the region where the Euler angles are valid) by means of the
standard kinematic relationship [38]
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Fig. 2.3 The quad-rotor in an
inertial frame. f1, f2, f3, f4
represent the thrust of each
motor, ψ , θ and φ represent
the Euler angles, and u is the
main thrust

� = Wηη̇ (2.8)

where

Wη =
⎡
⎣

− sin θ 0 1
cos θ sinφ cosφ 0
cos θ cosφ − sinφ 0

⎤
⎦ (2.9)

then

� =
⎡
⎣

φ̇ − ψ̇ sin θ

θ̇ cosφ + ψ̇ cos θ sinφ

ψ̇ cos θ cosφ − θ̇ sinφ

⎤
⎦ (2.10)

Define

J = J(η) = WT
η IWη (2.11)

where

I =
⎡
⎣

Ixx 0 0
0 Iyy 0
0 0 Izz

⎤
⎦ (2.12)

so that

Trot = 1

2
η̇T

Jη̇ (2.13)

Thus, the matrix J = J(η) acts as the inertia matrix for the full rotational kinetic en-
ergy of the quad-rotor, expressed directly in terms of the generalized coordinates η.

The model of the full rotorcraft dynamics is obtained from Euler–Lagrange equa-
tions with external generalized forces
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d

dt

(
∂L

∂q̇

)
− ∂L

∂q
=

[
Fξ

τ

]
(2.14)

where Fξ = RF̂ ∈ R
3 is the translational force applied to the rotorcraft due to main

thrust, τ ∈ R
3 represents the yaw, pitch and roll moments and R denotes the rota-

tional matrix. R(ψ, θ,φ) ∈ SO(3) represents the orientation of the aircraft relative
to a fixed inertial frame:

R =
⎡
⎣

cθcψ cψsθ sφ − cφsψ sφsψ + cφcψsθ
cθ sψ cφcψ + sθ sφsψ cφsθ sψ − cψsφ
−sθ cθ sφ cθ cφ

⎤
⎦ (2.15)

where cθ stands for cos θ and sθ for sin θ . From Fig. 2.1, it follows that

F̂ =
⎡
⎣

0
0
u

⎤
⎦ (2.16)

where u is the main thrust directed out of the bottom of the aircraft and expressed
as

u =
4∑

i=1

fi (2.17)

and, for i = 1, . . . ,4, fi is the force produced by motor Mi , as shown in Fig. 2.1.
Typically fi = kω2

i , where ki is a constant and ωi is the angular speed of the ith
motor. The generalized torques are thus

τ =
⎡
⎣

τψ

τθ

τφ

⎤
⎦ �

⎡
⎣

∑4
i=1 τMi

(f2 − f4)�

(f3 − f1)�

⎤
⎦ (2.18)

where � is the distance between the motors and the center of gravity, and τMi
is the

moment produced by motor Mi , for i = 1, . . . ,4, around the center of gravity of the
aircraft.

Since the Lagrangian contains no cross terms in the kinematic energy combin-
ing ξ̇ with η̇, the Euler–Lagrange equation can be partitioned into dynamics for ξ

coordinates and η coordinates. The Euler–Lagrange equation for the translational
motion is

d

dt

[
∂Ltrans

∂ ξ̇

]
− ∂Ltrans

∂ξ
= Fξ (2.19)

then

mξ̈ + mgEz = Fξ (2.20)

As for the η coordinates, it can be written

d

dt

[
∂Lrot

∂ η̇

]
− ∂Lrot

∂η
= τ (2.21)
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or

d

dt

[
η̇T

J
∂ η̇

∂η

]
− 1

2

∂

∂η

(
η̇T

Jη̇
) = τ (2.22)

Thus one obtains

Jη̈ + J̇η̇ − 1

2

∂

∂η

(
η̇T

Jη̇
)

(2.23)

Defining the Coriolis-centripetal vector

V̄ (η, η̇) = J̇η̇ − 1

2

∂

∂η

(
η̇T

Jη̇
)

(2.24)

one writes

Jη̈ + V̄ (η, η̇) = τ (2.25)

but V̄ (η, η̇) can be expressed as

V̄ (η, η̇) =
(
J̇− 1

2

∂

∂η

(
η̇T

J
))

η̇

= C(η, η̇)η̇ (2.26)

where C(η, η̇) is referred to as the Coriolis term and contains the gyroscopic and
centrifugal terms associated with the η dependence of J. This yields

mξ̈ + mgEz = Fξ (2.27)

Jη̈ = τ − C(η, η̇)η̇ (2.28)

To simplify let us take

τ̃ =
⎛
⎝

τ̃ψ

τ̃θ

τ̃φ

⎞
⎠ = J

−1(τ − C(η, η̇)η̇
)

(2.29)

Finally one obtains

mẍ = u(sinφ sinψ + cosφ cosψ sin θ) (2.30)

mÿ = u(cosφ sin θ sinψ − cosψ sinφ) (2.31)

mz̈ = u cos θ cosφ − mg (2.32)

ψ̈ = τ̃ψ (2.33)

θ̈ = τ̃θ (2.34)

φ̈ = τ̃φ (2.35)

where x and y are coordinates in the horizontal plane, z is the vertical position,
and τ̃ψ , τ̃θ and τ̃φ are the yawing moment, pitching moment and rolling moment,
respectively, which are related to the generalized torques τψ , τθ , τφ .
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Fig. 2.4 The quad-rotor in an
inertial frame. fi represent
the thrust of motor i and Tf

is the main thrust

2.2.2 Newton–Euler Approach

The general motion of a rigid body in space is a combination of translational and
rotational motions. Consider a rigid body moving in inertial space, undergoing both
rotations and translations. Let us define now an earth fixed frame I and a body-
fixed frame A , as seen in Fig. 2.4. The center of mass and the body-fixed frame are
assumed to coincide. Using Euler angles parametrization, the airframe orientation
in space is given by a rotation R from A to I , where R ∈ SO(3) is the rotation
matrix. Using the Newton–Euler formalism, the dynamics of a rigid body under
external forces applied to the center of mass and expressed on earth fixed frame is

ξ̇ = v

mv̇ = f (2.36)

Ṙ = R�̂

I �̇ = −� × I� + τ

where ξ = (x, y, z)T denotes the position of the center of mass of the airframe with
respect to the frame I relative to a fixed origin, v ∈ I denotes the linear veloc-
ity expressed in the inertial frame, and � ∈ A denotes the angular velocity of the
airframe expressed in the body-fixed frame. The mass of the rigid body is denoted
by m, and I ∈ R

3×3 denotes the constant inertia matrix around the center of mass
(expressed in the body-fixed frame A ). ω̂ denotes the skew-symmetric matrix of
the vector ω. f ∈ I represents the vector of the principal non-conservative forces
applied to the object; including thrusts Tf and drag terms associated with the rotors.
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τ ∈ A is derived from differential thrust associated with pairs of rotors along with
aerodynamics effects and gyroscopic effects.

Translational Force and Gravitational Force The only forces acting on the
body are given by the translational force Tf and the gravitational force g. From
Fig. 2.4, the thrust applied to the vehicle is

Tf =
4∑

i=1

fi (2.37)

where the lift fi generated by a rotor in free air can be modeled as fikω2
i in the

z-direction, where k > 0 is a constant and ωi is the angular speed of the ith motor.
Equation (2.37) can be rewritten as

Tf = k

(
4∑

i=1

ω2
i

)
(2.38)

Then

F =
⎡
⎣

0
0
Tf

⎤
⎦ (2.39)

The gravitational force applied to the vehicle is

fg = −mgEz (2.40)

This yields

f = REzTf + fg (2.41)

Torques Due to the rigid rotor constraint, the dynamics of each rotor disc around
its axis of rotation can be treated as a decoupled system in the generalized variable
ωi , denoting angular velocity or a rotor around its axis. The torque exerted by each
electrical motor is denoted by τMi

. The motor’s torque is opposed by an aerody-
namic drag τdrag = kτω

2
i . Using Newton’s second law one has

IMω̇i = −τdrag + τMi
(2.42)

where IM is the angular moment of the ith motor and kτ > 0 is a constant for quasi-
stationary maneuvers in free flight. In steady state, i.e., when ω̇i = 0, the yaw torque
is

τMi
= kτω

2
i (2.43)

The generalized torques are thus

τA =
⎡
⎣

∑4
i=1 τMi

(f2 − f4)�

(f3 − f1)�

⎤
⎦ =

⎡
⎣

τψ

τθ

τφ

⎤
⎦ (2.44)
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where � represents the distance between the motors and the center of gravity. Rewrit-
ing (2.44) one has

τψ = kτ

(
ω2

1 + ω2
3 − ω2

2 − ω2
4

)
(2.45)

τθ = �k
(
ω2

2 − ω2
4

)
(2.46)

τφ = �k
(
ω2

3 − ω2
1

)
(2.47)

where τψ , τθ and τφ are the generalized torques (yawing moment, pitching moment
and rolling moment, respectively). Each rotor may be thought of as a rigid disc
rotating around the axis Ez in the body-fixed frame, with angular velocity ωi . The
rotor’s axis of rotation is itself moving with the angular velocity of the frame. This
leads to the following gyroscopic torques applied to the airframe:

τGA = −
4∑

i=1

IM(ω × Ez)ωi

= −(ω × Ez)

4∑
i=1

IMωi (2.48)

This yields

τ = τA + τGA (2.49)

Rewriting (2.36), one has

ξ̇ = v

mv̇ = REzTf − mgEz (2.50)

Ṙ = R�̂

I �̇ = −� × I� + τA + τGA

2.2.3 Newton’s Equations to Lagrange’s Equations

Using the classical yaw, pitch and roll Euler angles (ψ, θ,φ) applied in aeronautical
applications [5, 33], the rotation matrix can be expressed as

R =
⎡
⎣

cθcψ cψsθ sφ − cφsψ sφsψ + cφcψsθ
cθ sψ cφcψ + sθ sφsψ cφsθ sψ − cψsφ
−sθ cθ sφ cθ cφ

⎤
⎦ (2.51)

The equations in (2.50) can be separated into the ξ coordinates dynamics and the η

dynamics. Rewriting the ξ dynamics one has

ξ̈ = 1

m
(REzTf − gEz) (2.52)

where
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REz =
⎡
⎣

sφsψ + cφcψsθ
cφsθ sψ − cψsφ

cθ cφ

⎤
⎦

From Figs. 2.3 and 2.4 one has u = Tf , this yields

ẍ = 1

m
u(sinφ sinψ + cosφ cosψ sin θ) (2.53)

ÿ = 1

m
u(cosφ sin θ sinψ − cosψ sinφ) (2.54)

z̈ = 1

m
u cos θ cosφ − g (2.55)

From Newton–Euler formalism, one obtains in (2.53)–(2.55) the same equations as
obtained in (2.30)–(2.32).

2.2.4 Newton–Euler Approach for an X-type Quad-Rotor

The quad-rotor model presented in Sects. 2.2.1 and 2.2.2 considers front and rear
motors aligned with the longitudinal axis, and left and right motors aligned with
the lateral axis. This section introduces an “X-type” quad-rotor flying configura-
tion, considering two frontal motors and two rear motors. The quad-rotor dynamical
model equations are based on Newton–Euler formalism, where the nonlinear dy-
namics is obtained in North-East-Down (NED) inertial and body-fixed coordinates,
see Fig. 2.5. Let {N,E,D} represent the inertial reference frame and {X,Y,Z} rep-
resent the body-fixed frame. The position vector of the center of mass of the ro-
torcraft is denoted by ξ = (x, y, z)T, representing the position coordinates of the
vehicle relative to the NED inertial frame. The orientation vector of the aircraft with
respect to the inertial frame is expressed by η = (ψ, θ,φ)T, where ψ , θ and φ are
the yaw, pitch and roll Euler angles, respectively. The full nonlinear dynamics of the
quad-rotor can be expressed as

mξ̈ = −mgD + RF (2.56)

I�̇ = −� × I� + τ (2.57)

where R ∈ SO(3) is a rotation matrix that associates the inertial frame with the
body-fixed frame, F denotes the total force applied to the vehicle, m is the total
mass, g denotes the gravitational constant, � represents the angular velocity of the
vehicle expressed in the body-fixed frame, I describes the inertia matrix, and τ is
the total torque.

Let u = ∑4
i=1 Ti be the force applied to the vehicle, which is generated by the

four rotors. Assuming that this force has only one component in the Z direction, the
total force can be written as F = (0,0,−u)T. The rotation matrix R is defined as

R =
⎡
⎣

cθcψ sφsθ cψ − cφsψ cφsθ cψ + sφsψ
cθ sψ sφsθ sψ + cφcψ cφsθ sψ − sφcψ

−sθ sφcθ cφcθ

⎤
⎦ (2.58)
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Fig. 2.5 NED diagram of the
quad-rotor dynamical model

where c. = cos(.) and s. = sin(.). Let us define now an auxiliary vector τ̃ related to
the generalized torque τ and based on (2.57):

τ̃ =
⎡
⎣

τ̃ψ

τ̃θ

τ̃φ

⎤
⎦ = I−1W−1(−IẆ η̇ − W η̇ × IW η̇ + τ ) (2.59)

where � = W η̇ and W is [38]:

W =
⎡
⎣

− sin(θ) 0 1
cos(θ) sin(φ) cos(φ) 0
cos(θ) cos(φ) − sin(φ) 0

⎤
⎦ (2.60)

Using (2.56)–(2.59), the quad-rotor dynamical model can be represented by

mẍ = −u
(
cos(ψ) sin(θ) cos(φ) + sin(ψ) sin(φ)

)
(2.61)

mÿ = −u
(
sin(ψ) sin(θ) cos(φ) − cos(ψ) sin(φ)

)
(2.62)

mz̈ = −u
(
cos(θ) cos(φ)

) + mg (2.63)

ψ̈ = τ̃ψ (2.64)

θ̈ = τ̃θ (2.65)

φ̈ = τ̃φ (2.66)

In the “X-type” quad-rotor model, the motors M1 and M3 rotate clockwise, while
motors M2 and M4 rotate counter-clockwise. Assuming that total thrust approxi-
mately counteracts gravity, i.e., the quad-rotor is in hover or near-hover flight con-
ditions, we can consider that each thrust can be modeled as τi = Cw2

i , where C is
a constant value depending on the rotor characteristics and wi denotes the speed
of the rotor i [6]. For simplicity, it is also assumed that the torque τi generated by
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each rotor is proportional to its lift force, then τi = CMTi . Taking into account the
previous assumptions, we can obtain the generalized torques as

⎡
⎣

τψ

τθ

τφ

⎤
⎦ =

⎡
⎣

−CM CM −CM CM

−l −l l l

−l l l −l

⎤
⎦

⎡
⎢⎢⎣

T1
T2
T3
T4

⎤
⎥⎥⎦ (2.67)

where l represents the distance between the center of mass and the center of the
rotor.

2.3 Concluding Remarks

In this chapter Euler–Lagrange and Newton–Euler approaches have been applied
for obtaining a simplified model of a quad-rotor rotorcraft. The model is formed
by a minimum number of states and inputs, but retains the main features that must
be considered when designing control laws. Two quad-rotor configurations were
analyzed. The first configuration addressed a classical motor arrangement having
one pair of motors aligned with the longitudinal axis while the other pair is aligned
with the translational axis. The second configuration addressed an “X-Flyer” motor
arrangement, having two frontal motors and two rear motors.

The models obtained here will be used in later sections for designing control laws
devoted to attitude stabilization and autonomous positioning.
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